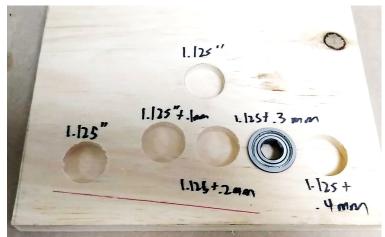
Authors: Matthew

OBJECTIVES:

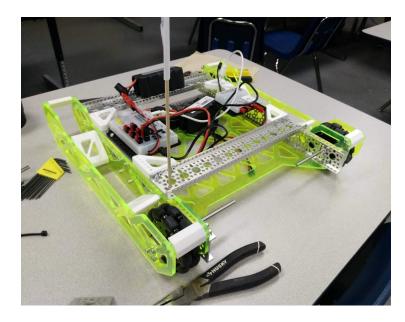

- 1. CNC Router setup
- 2. Figure out CAM
- 3. Figure out work-holding
- 4. Figure out tolerances

PROGRESS:

- Decided to use Fusion360 for cam because it had a post processor for our shapeoko machine pre loaded
 - Used feeds and speeds found online for our respective machine and material
 - Devised a system using double sided tape and masking tape to use as workholding
 - Temporary solution: we will look into a threaded wasteboard in the future
- Machined bearing holes in a piece of wood to test tolerances
 - Machined 5 holes, one with no extra tolerance added, and then 4 more with .1mm more each
 - Found that +.1 and +.2 mm were press fit, and any greater was a loose fit

- 1. Buy and test more endmills
- 2. Improve workholding
- 3. Test more materials

Authors: Matthew


OBJECTIVES:

- 1. Repair Mecanum Chassis made for training
- 2. Put together parts list to order for prototyping

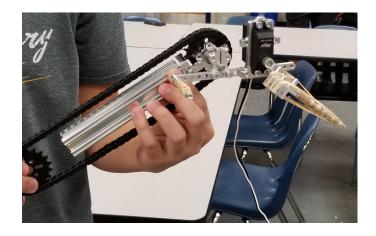
PROGRESS:

- Mecanum Chassis Repair
 - One of the motors on the chassis was broken and we needed to use the chassis for prototyping
 - Took motors from another robot and put them on
 - Took time to manage cables
- Prototyping parts list
 - Decided on parts that we'd use to start prototyping intakes
 - VEX Flex wheels
 - Gobilda channels/axles/hubs
 - Extra servos
 - Added Parts needed to construct drivetrain to list
 - Added End Mills to list in order to machine different materials and hole sizes on our CNC

- 1. Get parts ordered ASAP
- 2. Start constructing prototypes for intake
- 3. Start machining of drivetrain parts once endmills arrive

Authors: Andrew, Matthew


OBJECTIVES:


- 1. Prototype chain bar
- 2. Prototype Gripper
- 3. CNC Wasteboard

PROGRESS:

- Prototype chain bar
 - CAD Designed and 3-D printed parts to replace expensive + heavy goBilda pillow blocks
 - Assembled Z-shaped arm; waiting on right sized sprocket
- Prototype gripper
 - Began thinking of stud-gripping designs
 - Tested stud arm vs. stone face arm; which "appendage" should be attached to servo and which should be fixed
 - Ultimately chose fixed stud gripper and moving face gripper for superior reliability
 - Metal "overhang" resulted in better rubber band grip
- CNC Wasteboard
 - Need consistent work holding in order to machine parts
 - Put threaded inserts into wasteboard to allow clamps to be used/parts screwed down

- 1. Get parts ordered ASAP
- 2. Start constructing prototypes for intake
- 3. Order sprockets for chain bar
- 4. Continue testing gripper

Authors: Andrew

OBJECTIVES:

- 1. Test Gripper
- 2. Test Chain Bar
- 3. Prototype Intake
- 4. Finish Wasteboard Inserts
- 5. Begin Manufacturing Drivetrain Parts

PROGRESS:

- Chain bar implementation
 - Smaller sprockets arrived, we installed them in the 3-D printed parts and assembled the through-gorail section
 - Works as designed/intended
- Gripper Improvement
 - Gripper was skewed and loose gripping
 - Added sidebars to secure stud, unskewed the face gripper by moving it closer to the servo
 - Mounted grabber onto chain bar, verified it clears the bar
 - Reprogrammed servo to yield a tighter hold
- Evaluate intake wheels
 - Rubber WCP wheels arrived
 - GoTube inserts had a great fit and lots of torque, but caused the wheels to become much too stiff
 - Original plan of soft TPU 3-D printed hubs will be resumed

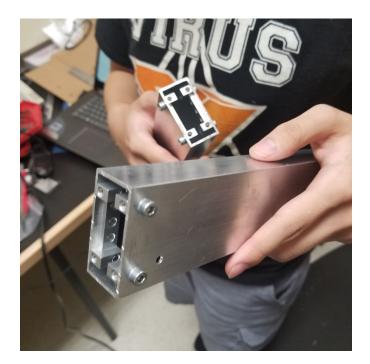
FUTURE PLANS:

- 1. Design and CAD proper compliant gripper
- 2. Start constructing prototypes for intake
- 3. Determine appropriate chain bar lengths
- 4. Decide on motor and shaft mounting for chain bar

B4

Authors: Andrew, Matthew

OBJECTIVES:


- 1. Finish making box tube drivetrain beams
- 2. Start machining side plates
- 3. Evaluate intake wheel hubs

PROGRESS:

- Box Tube Beams
 - Cut remaining pieces of box tubing out
 - \circ \quad Used a file to flatten and flush the ends
 - Used a 3D-printed jig to drill precise holes into the box tube
- Side Plate Machining
 - Tried to cut outer side plate out of ¼" polycarbonate
 - Broke an endmill, ended up running the cutter slower and fixed depth of cut issues
 - Played around with workholding some more
 - settled on using double sided tape and screws
 - Contour operation left tabs to be manually cut out next meeting
- Intake wheels
 - Hexagon-patterned 3D-printed TPU design proved FAR too stiff, did not have any give
 - Slicing out nearly all the material, leaving six flexible spokes
 - Wheels are still barely stiffer than preferred, new arch-spoked or thin hexagon designs considered

- 1. Continue to machine side plates
- 2. Finish cutting side plate out
- 3. Design and print new wheel hubs
- 4. Install threaded inserts onto CNC

Authors: Curtis, Matthew

OBJECTIVES:

- 1. Print updated intake wheel hubs
- 2. Cut and deburr extra side plates
- 3. Enclosure for CNC

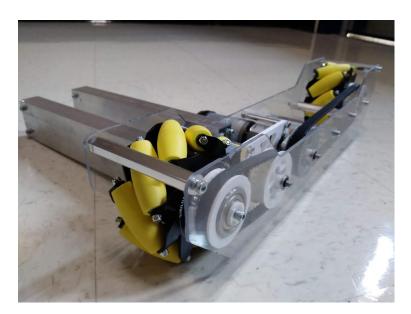
PROGRESS:

- Cut an outer side plate
 - Will be used for construction
 - during tomorrow's meeting
- Removed outer side plate from the stock
 - Cut off tabs and sanded them down using the belt sander
 - Drilled out pilot holes using hand drill
- Temporary dust protection for CNC
 - Cutting the side plates created many plastic chips and they got everywhere
 - We wanted to enclose the CNC to keep the space clean and make clean-up easier
 - Constructed enclosure out of cardboard, tape, and paper
- Printed new intake hubs out of TPU
 - New hubs are significantly more polished
 - 6-spoked design works well and has a low profile

- 1. Design clamps for more reliable CNC workholding
- 2. Continue prototyping intake

Authors: Curtis, Matthew

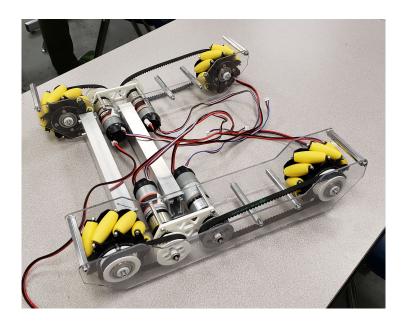
OBJECTIVES:


- 1. Cut more side plates
- 2. Start Assembling drivetrain
- 3. Develop CAM for intake plates

PROGRESS:

- Put together a drivetrain pod to test various factors like belt tension, rigidity, etc
 - Belts are rather tense, but not too taut: there is almost no backlash between the motor and the wheel
 - Polycarbonate plates initially felt too flimsy, but once building was complete, each drivetrain pod was surprisingly rigid
 - The box tube attaches nicely
 - some flex laterally due to flimsy polycarbonate plates, but nearly no flex vertically
- Created CAM toolpath for prototype intake plates
 - Did not get a chance to machine, too busy machining side plates.
 - Still getting acclimated to CNC

- 1. Finish assembling drivetrain
- 2. Machine intake plates


Authors: Curtis, Matthew

OBJECTIVES:

- 1. Continue to put together drivetrain
- 2. Continue to cut drivetrain plates
- 3. Repair VIRUS Rover Ruckus robot

PROGRESS:

- Began building second half of drivetrain
 - Built as much as we could without the outer side plate machined
 - Small amount of flex near the front
 of the chassis, where there is the
 least amount of structural support

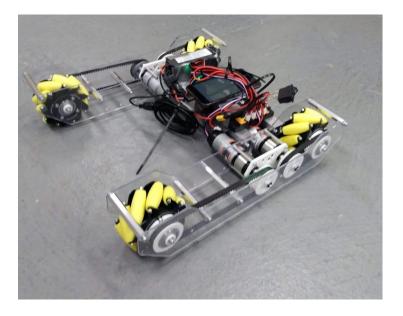
- Should be minimized with the thicker delrin plates we plan to use later
- Spent time ordering parts for the robot
 - Placed orders for linear slides, new tools, motors, and other miscellaneous hardware
- Spent time getting last year's robot functional in order to use it for outreach
 - Repaired intake, slides, and broken phone holder

- 1. Finish assembling and wiring drivetrain
- 2. CNC prototype intake

Authors: Curtis, Matthew

OBJECTIVES:

- 1. Cut last drivetrain sideplate
- 2. Assemble and wire drivetrain


PROGRESS:

- Machined the very last side plate
 - Once again, held down using screws and double sided tape
 - Used router to make pilot holes
 which we drilled out using a
 hand-drill
- Attached last side plate
 - Wired up electronics and battery
 - Slight amount of flex in the front of

the robot

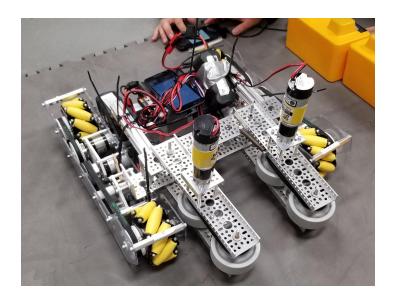
- Plans to add belly pan if thicker plates aren't enough support
- Temporary plates rigid enough for testing code
- Temporarily affixed robot phone, REV hub, and battery to the rear box tube

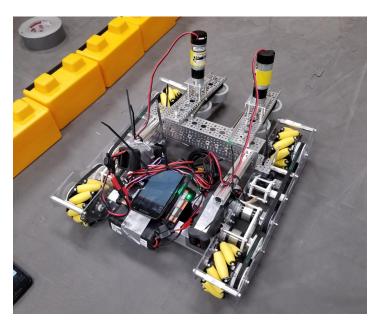
- 1. Finalize CAD so that we can finalize drivetrain
- 2. Get belly pan cut
- 3. Get parts ordered to start assembling odometry

11/02/19 9:10 AM - 12:05 PM

Authors: Eric, Matthew, Andrew

OBJECTIVES:


- 1. Assembled odometry pod
- 2. Assembled intake prototype
- 3. Assembled slides prototype


PROGRESS:

- Odometry installed in one drivetrain pod
 - Assembled an odometry pod and placed it inside our drivetrain
 - Pod rotates well and springs well using a rubber band
 - Were not able to test because we did not have the proper cable
 - Odometry pods required us to adapt a ribbon cable to 2.0mm JST
- Intake prototyped and installed (see next page for testing of the intake)
 - Motors not cantilevered (unstable design), instead coupled to the shaft
 - Found ideal angle for stones, but also a dead zone due to design flaw
 - Springs attached to pull intake inwards in order to collect stones
- Slides coupled to each other
 - Assembled a 3-stage slide using prototype inserts
 - Slides worked well, no real issues

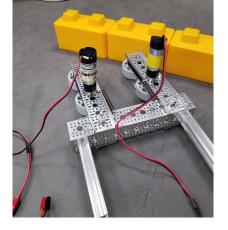
- 1. Continue assembling more odometry
- 2. Print new slides inserts and install
- 3. Stabilize the intake wheels
- 4. Design and prototype a swiveling mechanism for intake

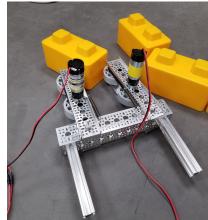
Intake Test Results

Authors: Eric

DETAILED EXPLANATION:

VIRUS 9866


Building Notebook


- Cantilevered motors unstable
 - Intake wheel would not be centered, unbalanced spinning and shaking
 - Solved by raising motor to couple it to a shaft held by two channels
- Intake flaws
 - Particular wheel is not secure to axle, might be hub problem
 - Channel on intake pushes the stones at certain area
 - Flexible adapters too flexible, found in unusual positions and makes intake unstable
- Intake behavior
 - Cannot intake stone horizontally
 - Stalls the motors and jams the intake
 - Springs securely intake stones, apply squeezing pressure
 - Easy to take from above
 - Tends to push nearby stones everywhere, disorganized
 - Could interfere with alliances in autonomous
 - Can be fixed with a shroud on the outside of intake

Authors: Matthew

OBJECTIVES:

Assemble and wire Odometry

PROGRESS:

- Put together the remaining odometry pods
 - Assembled the 3D-printed parts
 - Verified that the distance from the magnet to the sensor was good by powering the encoders with alligator clips

- Had to cut and solder the cables to interface with rev hub cables
 - Initially improperly wired to 3.3v
 - changed wiring to 5v
 - All powered via the Rev hub's 5v power headers via a custom splitter

FUTURE PLANS:

Install Odometry pods onto the robot chassis

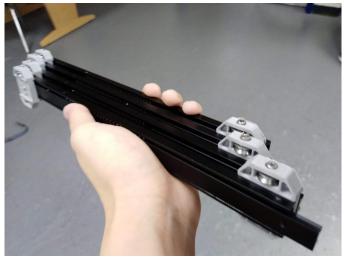
Authors: Matthew

OBJECTIVES:

- 1. Install Odometry
- 2. Test new Slide inserts

PROGRESS:

- Odometry
 - Installed odometry
 - Mounted the forwards odometry on their mounts
 - Drilled and tapped hole in box tube for side odometry
 - Springing and end limits worked fine
 - Forwards odometry may need more clearance, comes close to contacting drivetrain



- Slides
 - New Inserts work well
 - Inserts leave room for string but prevent string from easily jumping off pulley
 - Ball bearing pulleys run smoothly in insert

- 1. Machine new Delrin sideplates
- 2. Assemble slides onto full robot once ready

11/12/19 2:10 PM - 4:00 PM

Authors: Matthew, Curtis

OBJECTIVES:

- 1. CNC Outer Sideplate
- 2. Prototype Grabber 2

PROGRESS:

- Started cutting updated side plates out of delrin
 - \circ New plates are up to date with CAD
 - Cut out of final material
 - Will allow us to go ahead with the final robot assembly
 - Started machining, and assembled
 onto robot at end of meeting
 - The paper enclosure for the CNC we have been using as a temporary solution does not hold up to vacuuming
 - It holds chips well but does not handle stress.
 - Will need to be replaced with a better solution
- Attached first new side plate, began to cut the second

- 1. Continue to cut remaining plates
- 2. Devise better CNC enclosure

Authors: Matthew

OBJECTIVES:

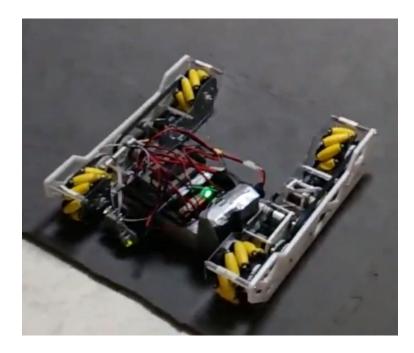
- 1. CNC 2nd Side Plate
- 2. Continue 3D printing parts for slides

PROGRESS:

- Machined the 2nd outer side plate
 - Had an issue in the middle of machining pockets, z axis bottomed out and lost rigidity
 - Finish affected, attempted to drill out holes by hand for bearings but they were still off center
 - Will use, but might recut later
- 3D print slides parts
 - Continued to print parts so we can prototype slides
 - Printed spool and additional inserts

- 1. Assemble and prototype slides
- 2. Continue CNC'ing side plates

Authors: Matthew, Andrew


OBJECTIVES:

- 1. Install 2nd side plate
- 2. Test slides with motor
- 3. CAD/prototype custom intake designs

PROGRESS:

- Install 2nd side plate
 - Took off prototype polycarbonate
 side plates, attached new side plate
 - Could not put in bearings for motors due to off center holes, still worked alright
- Slides Testing
 - Strung up slides and used a spare motor to test
 - Slides went up quickly and had plenty of torque

- 1. Machine inner side plates
- 2. Print parts for intake

Authors: Matthew

OBJECTIVES:

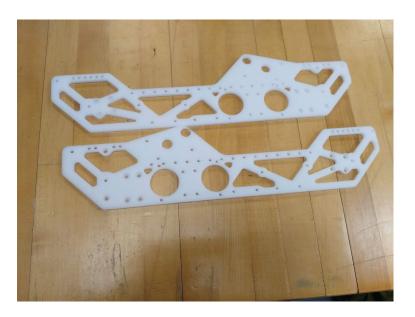
- 1. Machine Inner Side Plate
- 2. 3D printing parts

PROGRESS:

- 3D printed intake parts
 - Mounts for attaching to robot
 - Plates
- 3D printed slide parts
 - Prototype slide mounting pieces
 - Roller pieces for string
- Machining first inner side plates
 - Machined first inner side plate
 - Had issue where CNC shifted in X axis between pocket and contour operations
 - Part still functional, but will replace later

- 1. Finish machining inner side plates
- 2. Design enclosure for CNC

Authors: Matthew


OBJECTIVES:

- 1. Finish Machining Inner Side Plates
- 2. Create new CNC enclosure

PROGRESS:

- Clean up first side plate
- Machined Last Inner Side Plate
 - Experimented with plunging deeper
 into the stock (½")
 - Seemed to cut fine
 - Had an issue when cutting the holes
 - Broke the 2mm endmill, possibly because of material clogging it
- Cardboard CNC Enclosure
 - Paper enclosure was hard to vacuum from
 - Replaced with cardboard enclosure
 - Included flaps for material that sticks outside of the machine

- 1. Install inner side plates
- 2. Assemble intake

Authors: Matthew

OBJECTIVES:

- 1. Install Side Plates
- 2. Construct rollers for slides

PROGRESS:

- Installed new side plates
 - Required most of the robot to be taken apart
 - New side plates gave the drivetrain much more rigidity

- Also installed intake mounting modules to prepare for intake assembly and mounting
- Constructed slide rollers
 - Assembled 3D printed ball bearing rollers for linear slide assembly
 - Used in order to keep string bends at 90 degrees to eliminate axial loads

- 1. Update Odometry Modules
- 2. Assemble intake

Authors: Matthew

OBJECTIVES:

- 1. Upgrade Odometry
- 2. Fix Wheels
- 3. Start Assembly of Intake

PROGRESS:

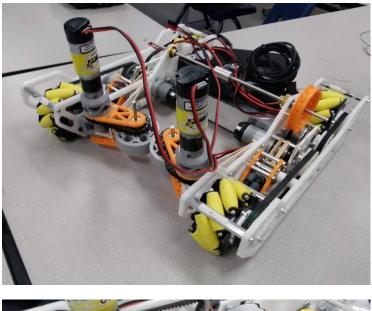
- Upgrade Odometry
 - Had issue previously with odometry hitting a beam on the drivetrain
 - Replaced with smaller more compact odometry
 - Previous wiring was messy
 - Resoldered and reinsulated custom length cables
- Fix Wheels
 - We noticed we assembled the wheels incorrectly and reassembled them in the correct orientation
- Intake Assembly
 - We started to put together part of the intake, eventually having one half done by the end of the meeting.

FUTURE PLANS:

Finish assembling intake

Authors: Curtis

OBJECTIVES:


- 1. Assemble intake
- 2. Test intake with skystones

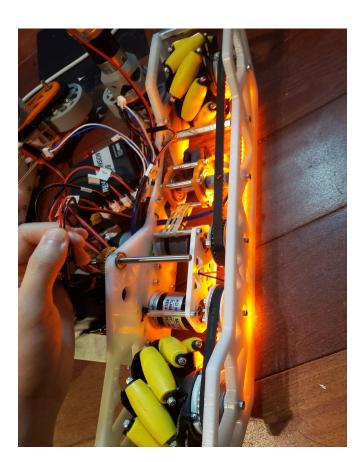
PROGRESS:

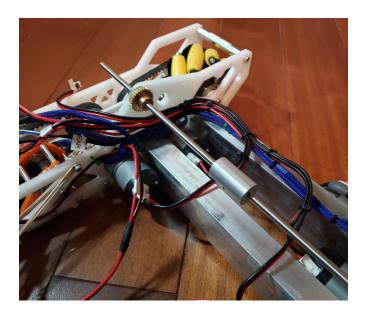
- Intake Assembly
 - Assembled the other half of the intake and mounted it to the motor.
- Intake Testing
 - Deployment works very well
 - Deploys by folding intake halves against each other and running wheels
 - Worked very well for narrow angles
 - When block came in sideways, intake would sometimes jam
 - Some minor issues with chain tension and strength of the clamping coupler

FUTURE PLANS:

Improve intake design

Authors: Curtis


OBJECTIVES:


- 1. Sleeved Cable
- 2. Managed and routed cable
- 3. RGB

PROGRESS:

- Sleeved the custom cables we made a few meetings ago
 - Used plastic cable sleeving
 - Protects cable from being pinched or getting tangled
- Routed cables to planned location of REV hub
- Labeled all cables for easy organization
- Experimented with LED lighting to improve aesthetics
 - Mounted orange LEDs to one of our outer side plates
 - It looks sick

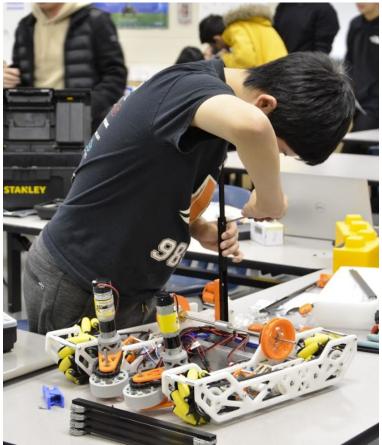
- 1. Mount REV hub
- 2. Mount linear slides
- 3. Continue developing chain bar

Authors: Matthew

OBJECTIVES:

- 1. Repair 3D-Printer
- 2. Retensione intake rubber bands
- 3. Assemble Slides

PROGRESS:

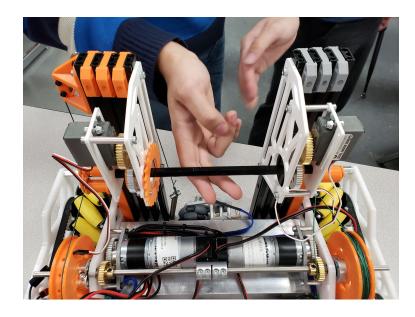

- Repair 3D-Printer
 - Lubricated 3D-printer bearings
 because x-axis was not smooth
- Retensioning Intake
 - Intake springing was too loose
 - Retensioned so that the springing was stiffer
 - Tested and found that it helped with picking up some blocks
- Assemble Slides
 - Put together the right half of the slides and attached it to the robot

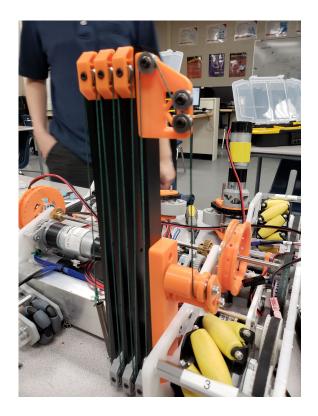
FUTURE PLANS:

slides

Finish assembling and attach the other half of the

Authors: Matthew, Eric


OBJECTIVES:

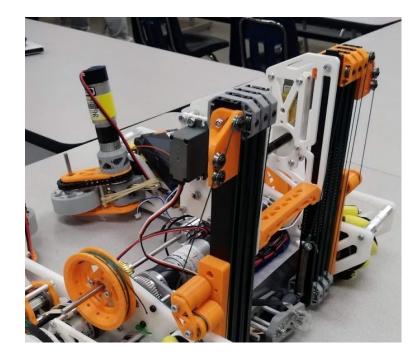

- 1. Complete attaching slides to robot
- 2. Assemble chain bar
- 3. Cut prototype chain bar plates

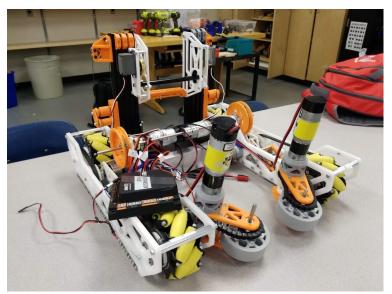
PROGRESS:

- Assembling slides
 - Built slides for the left side and attached them
 - Strung up the slides to for extension
- Chain bar
 - Assembled the mounting plates and servos for the chain bar
 - Tapped and cut a hex axle to length
 - One plate was cut from wood by the CNC
 - Chain bar will be used to maneuver stones after intaking them

- 1. String slides for retraction
- 2. Test slide extension/retraction with motors
- 3. Recut chain bar plates out of delrin

12/18/19 2:10 PM - 4:00 PM


Authors: Matthew


OBJECTIVES:

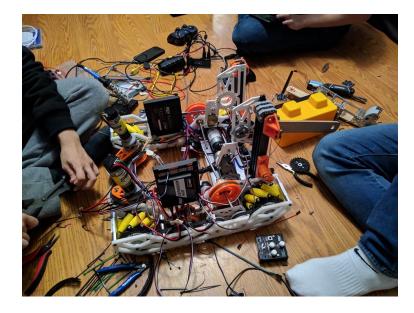
- 1. Finish stringing slides
- 2. Test with motors powered
- 3. Attach Crossbar

PROGRESS:

- String Slides
 - Strung slides for retraction
- Test Slides
 - Connected 2 motors in serial and plugged into a battery
 - Slides raise quickly with enough torque, go up and down well
- Attach Crossbar
 - Keeps the two sides of the slides
 coplanar
 - Keeps chain bar assembly rigid

- 1. Attach Rev Hubs
- 2. Further develop chain bar arm

Authors: Matthew, Curtis


OBJECTIVES:

- 1. Attach REV hubs
- 2. Attach prototype chain bar
- 3. Manage cables

PROGRESS:

- Attached REV hubs to robot
 - Managed configuration with
 - programmers
- Chain bar prototype is mounted
 - Second arm plate had to be cut by hand
 - Dimensions not as accurate
 - Poor screw tolerances
 - Slightly loose assembly, but usable for testing
 - Chain bar servos tested

- 1. Design and print guides for intake
 - a. Stones have too much space to move after intake
 - b. Guides will make it easier for chain bar to pick up stones
- 2. Recut the chain bar plates out of delrin on the CNC

Authors: Matthew, Keertik, Curtis

OBJECTIVES:

- 1. Machine new chain bar arms
- 2. Start Foundation Dragger Construction

PROGRESS:

- Machine Chain Bar Plates
 - First plate machined extremely poorly
 - After troubleshooting, we replaced the endmill and recut
- Assembled foundation dragger modules
 - Attached dragger pieces, sprocket to axle using hubs
 - Assembled servo block and attached sprocket

FUTURE PLANS:

Mount/chain foundation dragger

1/03/20

2:10 - 5:00

Authors: Keertik, Andrew

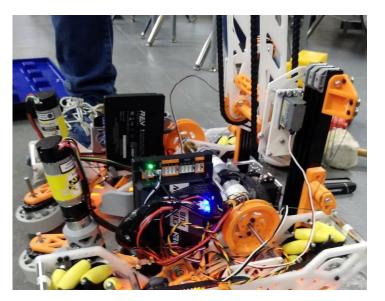

OBJECTIVES:

- 1. Construct Chain Bar
- 2. Construct Grabber
- 3. Finish Foundation Dragger

PROGRESS:

- Mounted foundation dragger
 - Could only attach servo-side c-channel at one point
 - Servo block interfered with screws
 - Attached the servo and axle modules onto the mounting hardware and chained up the mechanism
 - Rubber banded bottom of foundation dragger arms for grip
 - $\circ \quad \ \ {\rm Servo} \ \ {\rm side} \ {\rm worked} \ {\rm itself} \ {\rm loose}$
- Mounted chain bar
 - Greatly improved reliability with new
 3D printed spacers and parts
 - Drilled out 3D printed parts to use bushings without the need for bearings
 - Programmed servos
- Mounted chain bar-mounted grabber
 - Installed pieces of wheels for the grabber's contact points
 - Aligned plastic sprockets and chain bar to be horizontal
 - Planning to remove standoffs to allow intaking in rest position

- 1. Create another hole into the box tube to better mount servo-side c-channel
- 2. Tele-op test the arm and grabber



- 1. Adjust wiring
- 2. Reinstall foundation grabber
- 3. Test chain bar

PROGRESS:

- Further wire management
 - Intake was shutting on and off
 - Connectors within the cable bundle had disconnected
 - Reattached and electrical taped intake cables
 - Chain bar cables connected and routed temporarily
 - Servo extension cables to REV hubs do not provide enough range
 - Will need to be replaced with a more permanent solution
- Reinstall foundation grabber
 - Re-drilled and tapped new holes on aluminum bar
 - Rebuilt the grabber
- Test chain bar
 - Rewiring and running chain bar

- 1. Figure out how to manage cables so they can extend over ~4 feet but remain compact when slides are lowered
- 2. Mount stone grabber to chain bar

Authors: Andrew, Curtis

OBJECTIVES:

- 1. Wire Up Arm and Gripper Servos
- 2. Test LED lighting
- 3. Reinforce Chain Bar
- 4. Program Teleop Components

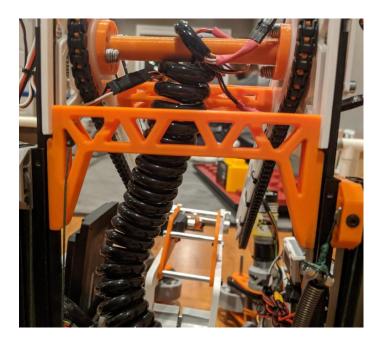
PROGRESS:

- Spiral cable
 - Used a custom coiled cable to route wires to the chain bar and grabber servos
 - Crimped pins onto the cable
 - Tested continuity
 - 12 conductor coil made 4 sets of 3-pin servo cables
 - Extra set for future additions or modifications
- LED Lights
 - Reinstalled LED strips on both exterior side plates
- Reinforce chain bar
 - Chain bar had a large amount of undesirable horizontal flex
 - Ziptied carbon fiber rod along length
 - Removed a gripper standoff for stone intaking in ground position
 - Optimized gripper is now much more consistent

- 1. Print and assemble team numbers onto sideplates
- 2. Redesign crossbar for slides

Authors: Curtis

OBJECTIVES:


- 3D-print team numbers to go on side plates
- 2. Redesign the crossbar between our two slide assemblies

PROGRESS:

- 3D printed our team numbers with cutouts to be press fit into the pockets in the robot's side plates
 - Reinforced connection with hot glue
- The previous crossbar only attached the slides via a single point
 - New design uses screw access holes on slides as additional mounting points
 - Makes the assembly significantly more rigid

- 1. Test foundation dragger
- 2. Test autonomous
- 3. Practice driving

Authors: Curtis

OBJECTIVES:

- 1. Figured out how to right fallen SkyStones
- 2. Sponsor plates
- 3. Testing foundation dragger

PROGRESS:

- Cutting clear polycarbonate plates to display sponsors on the robot
 - General shape determined
 - Mounting holes drilled
 - Mounted on robot to assess fit
- Coiled rubber bands and compliant wheel chunks around foundation dragger increase grip
 - Experimented with incorporating chunks of compliant wheel
 - Grippiness of the rubber and the height of the dragger allows us to right stones by lowering the dragger onto the stone and driving backwards
- Rubber bands keep snapping during tests
 - More robust solution could be to dip the dragger into a 2-part silicone
 - Also considered embedding compliant wheel slices into part

- 1. Prepare for qualifier
- 2. Refine notebooks and marketing materials
- 3. Practice driving
- 1. Display sponsors on sponsor plates
- 2. Figure out a more permanent method to implement a grippy dragger

Authors: Curtis, Eric

OBJECTIVES:

- 1. Reorganize wires
- 2. Driver tryouts
- 3. Foundation Dragging Testing

PROGRESS:

- Used a power distribution module to distribute the power from the battery to the servo power module, LED strips, and both REV hubs
 - REV hubs alone did not have enough xt-30 headers
 - Managed related cables.
- Driver tryouts
 - Different drivers assessed for the amount of stones they can stack in 2 minutes
 - Drivers finalized
 - Team members familiarized with control scheme
 - Robot scoring is consistent, reliable
 - Continuous trials without failure
- Discussed mechanics of dragging foundation
 - Grabber inhibits movement when pushing
 - Should ideally only be used to turn or pull the foundation

- 1. Pack/prepare for qualifier
- 2. Continue to test and develop autonomous paths
- 3. Practice driving

Qualifier 1 January 12th, 2020

1/14/20

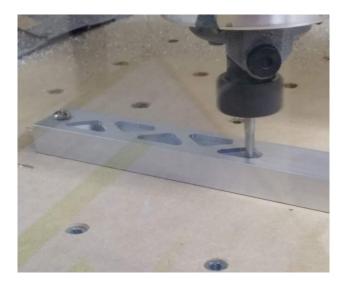
2:10 - 4:30

OBJECTIVES:

- 1. Reflect on Sunday Qualifier
- 2. Brainstorm/Conceptualize Robot Hardware Improvements
- 3. Establish Timeline until Next Qualifier, States

POSSIBLE IMPROVEMENTS:

- Chain bar servos do not have enough torque to reliably flip the grabber
 - Reduce length of chain bar
 - Reduce weight of grabber
- Reinforce linear slides
 - Current system utilizes 1-up, 1-down stringing system
 - Leads to crooked extension
 - Puts stress on slides
 - Only one side is supported while slides are extended
 - Replace 3D-printed adapter with metal box-tube
 - Added rigidity should help relieve stress
 - Implement 2-up, 1-down stringing system
 - Slides will be supported on both sides when extended, with an additional 3rd string to handle retraction
- Reinforce chassis to reduce sag
 - Drivetrain cantilevering outwards
- Incorporate capstone deposit mechanism


- 1. Revise Chain Bar design (focusing on lightness and torque)
- 2. Reinforce slides system and chassis
- 3. Redesign stringing system for slides
- 4. Incorporate capstone

Authors: Matthew

1. Machine Slides Box Tube

PROGRESS:

- Started Machining Box Tube for slides
 - Used to reinforce the back of the slides
 - Held stock using screws that were drilled into the box tube
 - Initially cut conservatively, used 4mm end mill to adaptive rough about 1.5 mm depth
 - Eventually determined that we could plunge the endmill the full 1/16" and still maintain a good finish
 - Flipped the tube over to machine both sides, zeroed to the center of the stock
 - After machining the 1st tube, cut the 2nd piece of stock but did not machine

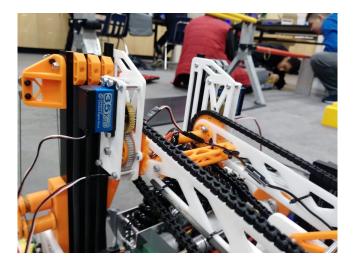
FUTURE PLANS:

1. Finish Machining

Authors: Matthew

OBJECTIVES:

- 1. Finish Machining
- 2. Replace Servos
- 3. Start Re-Assembling Slides


PROGRESS:

- Finish Machining
 - Developed CAM for a mirrored part and manufactured it
- Replace Servos
 - We ordered faster and stronger servos for our chain bar mechanism because our previous ones struggled a bit.
 - New ones seem to be torquier and smoother
- Re-Assemble Slides
 - Now that we have machined the aluminum, we wanted to attach it to the slides
 - By the end of the meeting, we had only finished half of the job.

1/25/20

9:00 - 2:00

- 1. Finish slides rebuild
- 2. Continue to test and develop autonomous paths
- 3. Practice driving

1/28/20

9:00 - 2:00

OBJECTIVES:

- 1. Finish Re-Assembling robot
- 2. Install Shapeoko Bitsetter

PROGRESS:

- Re-Assemble Robot
 - Had taken much of it apart to replace slide structure
 - Finished replacing everything, and put it back together
 - Had to restring slides and pulleys
 - Aluminum backed slides seemed to help with bending, still a little bit
 - New intake had better tensioned chain, more responsive
- Install Shapeoko bitsetter
 - To improve our manufacturing workflow, we bought a tool length probe called the Bitsetter
 - Had to install, wire, and configure the tool before we could use it

- 1. Practice Driving and evaluate bottlenecks
- 2. Test slides for reliability
- 3. Machine belly pan

Authors: Matthew, Andrew

OBJECTIVES:

- 1. Redo Intake
- 2. Machine Belly Pan

PROGRESS:

- Intake Redesign
 - Redid the intake to solve some issues
 - Replaced motors with faster ones (from 13.7 to 5.2) because they would help us pick up stones faster
 - Made intake structure longer for more reach and accounted for chain tension so that the chain wouldn't be slack
- Machine Belly Pan
 - Machined structural belly pan out of polycarbonate
 - Attached to the bottom of the robot

1/31/20

9:00 - 2:00

- 1. Practice driving
- 2. Machine Arm for chain bar

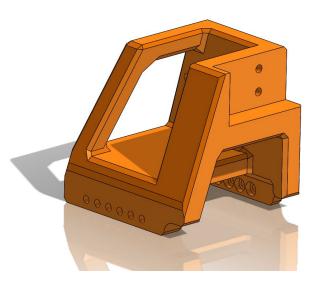
OBJECTIVES:

- 1. Replace Grabber Servo
- 2. Machine Aluminum Arm
- 3. Prototype Scissor Extension Park

PROGRESS:

- Replace Grabber Servo
 - We replaced the gripper servo with a higher torque servo to grip the stone better
- Machine Aluminum Arm
 - Replacing chain bar delrin arm with aluminum for rigidity
 - Pocketed out large sections to make sure the mechanism was light
 - Used the Shapeoko bitsetter to probe tool length for tool changes
- Prototype Scissor Park
 - Parking the whole robot can be hectic and pressuring for the drivers
 - Extension into the parking zone using scissor extension, since tape measures take time to roll out

- 1. Complete Scissor Park
- 2. Continue Machining
- 3. Practice driving


Authors: Andrew, Matthew

OBJECTIVES:

- 1. Design Crossbar Mount
- 2. Machined 2nd chain bar
- 3. Assembly Prototype Capstone

PROGRESS:

- Design Crossbar Mount
 - Sideplates sag inwards at the front; designed a piece to hold an aluminum crossbar
 - Part also mounts motors, to reduce rotational inertia on the intake motors
- Machined second chain bar arm
 - Cut out second chain bar arm
 - Filed out tabs and burrs
 - Waiting for other parts and time to machine
- Prototype Capstone
 - Using cardboard and zipties, formed the rough shape (which is a ring around the nubs)
 - Zip ties were a light and flexible method to reach minimum height barrier
 - Unsure about the release mechanism for capstone

- 1. Assembly new chain bar
- 2. Improve the capstone design

OBJECTIVES:


- 1. Printed new stone guides
- 2. Machine and attach bottom plate
- 3. Print Improved Capstone

PROGRESS:

- Stone guides larger, tighter space to hold the stone
 - Stones sometimes entered tipped due to the space between being not small enough to keep the stone upright
- Bottom plate for the stones machined
 - New guides also offered mounting solution for the new bottom plate
 - Keeps the stone from touching the ground to grab and lift stone on the move
- Print new (competition ready) capstone
 - Cannot make a ring around stone because the stones slip into our grabber
 - C shaped with an arm extending up into the release servo
 - Double sided tape applies an adhesive force to keep capstone on stone

FUTURE PLANS:

- Chamfer stone pan to allow stones to slide on more smoothly
- 2. Test capstone for reliability

2/11/20

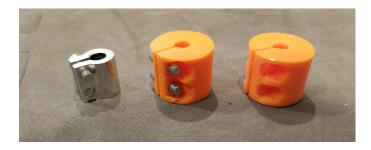
2:10-4:00

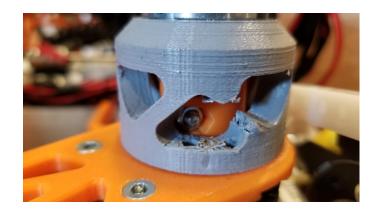
Authors: Andrew, Matthew

OBJECTIVES:

- 1. Fix intake springing
- 2. Print MMU team numbers
- 3. Install new intake couplers
- 4. Design and print foundation guards

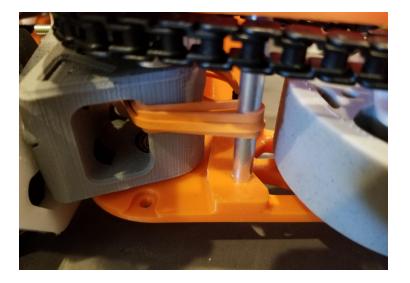
PROGRESS:


- Fix intake springing
 - Previous rubber bands kept getting torn apart by moving chains of intake
 - Installed zip tie limiters to protect bands
 - Used zip ties to link together rubber bands for adjustable tension and rest position
- Print MMU team numbers
 - Old 3d-printed team numbers struggled with balancing aesthetic and contrast
 - Printed new team numbers with orange
 fill and black outline using Prusa MMU
- Improved intake couplers
 - Small smoothbore Gobilda couplers often slipped, and metal threads tore out
 - 3D Printed much thicker and tighter couplers with D-bores and nut countersinks
 - Intake speed and effectiveness greatly improved

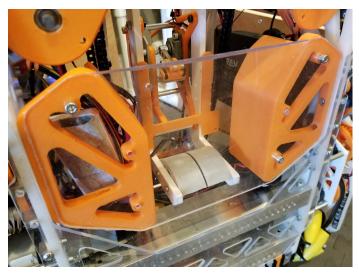


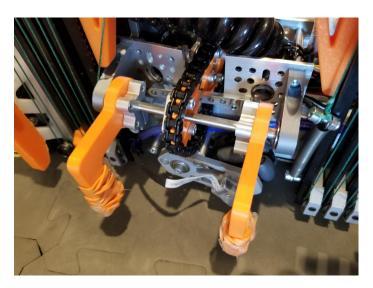
2/14/20

2:10-4:30



Authors: Andrew

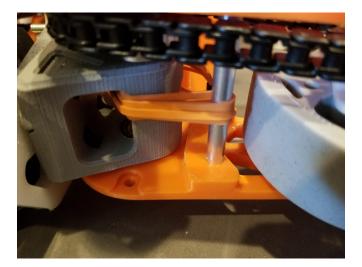

PROGRESS:


- Install foundation stoppers
 - Designed parts to form-fit sideplate with a single screw to hold them in place
 - Measured sideplate machining error in outer profile vs. inner perimeters, and appropriately accounted for error in 3D model

- Test intake couplers over time to see how they hold up
- 2. Print thicker orange layer team numbers for both sides
- 3. Revise foundation dragger
- 4. Revise foundation dragger mount

Authors: Andrew, Eric

OBJECTIVES:


- 1. Improved capstone
- 2. Fixed arm wiring
- 3. Installed new foundation grabbers

PROGRESS:

- Foundation stoppers
 - Prevent foundation from hitting robot's wheels, increasing autonomous reliability
- Version 2 of the Improve Capstone
 - Capstone prevents gripper from holding stones well due to back edge interfering with compliant silicone gripper pads
 - Drilled out larger holes to shift base of capstone back
- Tightened wiring along chainbar to prevent components from getting caught
- Installed new foundation grabber
 - Longer arms for more reach
 - Silicon tipped grabbers allow for a better, more reliable hold
 - Still capable of flipping stones effectively
 - Only one installed: will print mirrored part and install matching grabber next meeting

- 1. Create foundation grabbers with less tolerance for auto precision
- 2. Improve capstone for intaking

Qualifier 2 February 16th, 2020

Qual 2 Reflection

Authors: Andrew, Eric, Matthew

OBJECTIVES:

1. Reflect on Sunday Qualifier

PROGRESS:

- Analyzed our robot's performance and identified issues to fix
- Intake
 - Intake tends to kick away stones
 - Add smaller swing-out funneling wheels
 - Redo intake springing so it isn't as swingy
- Arm
 - Had issues with arm catching, not flipping, and bending 3D printed parts
 - Resign parts to be stronger, switch to aluminum arm design, debug servos
- Grabber
 - Rarely, but occasionally let go of stones
 - Replace servo with stronger servo
- Foundation Dragger
 - Tended to release when spinning the robot around
 - Did not allow the robot to turn efficiently
 - Design foundation dragger with wider stance
- Slides
 - Still tended to lean, although better than at 1st qualifier
 - Add a second vertical extension string to relieve stress to retraction side

- 1. Begin modelling and prototyping new parts
- 2. Integrate new parts
- 3. Test performance

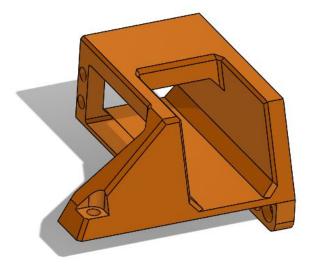
Authors: Matthew

OBJECTIVES:

- 1. Attach new intake funnelers
- 2. Attach new foundation dragger

PROGRESS:

- Attached new intake funnelers
 - Adds another set of wheels that swing out to "funnel" the block into the center
 - Greatly increases the amount of tolerance we have for picking up stones
 - Tested using TPU 3D printed belts
 - Allowed us to test before parts arrived
 - After testing, we found that blocks could get stuck in the "dead-zone" between the wheels
 - In addition, we found that the new intake funnelers tended to flail around too much
- New foundation dragger
 - Foundation dragger mounts are secured at three points across the two sideplates
 - Cantilevered servo sacrifices some rigidity for swift maintenance and accessibility


FUTURE PLANS:

- 1. Revise intake funnelers to eliminate dead-zone
- 2. Cut slots in servo mount CAD models to accommodate plans for two-way slide stringing

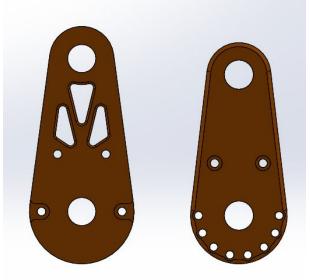
2/20/20

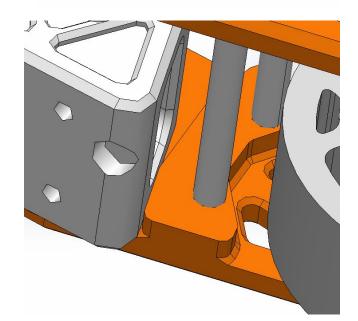
2.10 PM-4.30 PM

2/21/20 2:10 PM-4:30 PM

Authors: Andrew, Eric

OBJECTIVES:


- 1. Attach 2nd intake funnelers revision
- 2. Attach new endstops


PROGRESS:

- Attached new intake funnelers
 - Contain another set of wheels that swing out to "funnel" the block into the center
 - Greatly increase the amount of tolerance we have for picking up stones
 - Tested using TPU-3d printed belts
 - Allowed us to test before parts arrived
 - After testing, we found that blocks could get stuck in the "dead-zone" between the wheels
 - In addition, we found that the intake tended to flail around too much
- New intake endstop plates
 - Move the wheels to be closer together
 - Wheels make better contact
 - Ensures better intaking
 - Strips plastic coupler due to more force, switching to use a hyper hub

- 1. Revise intake funnelers to have a curved profile
- 2. Attach new intake motor mounting and cross bar

Authors: Curtis

OBJECTIVES:

- 1. Installed Crossbeam
- 2. Installed Aluminum Arm
- 3. Installed improved motor mount
- 4. Uninstalled Redundant Foundation Dragger

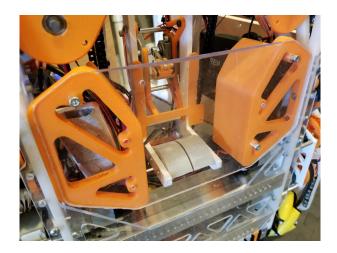

PROGRESS:

- Install Crossbeam+improved motor mounting
 - Installed aluminum box tube cross beam to add rigidity to chassis
 - Changed intake motors to mount to the cross beam mounts
 - Used metal intake couplers, should eliminate plastic stripping issues
- Install Aluminum Arm
 - Mounted more rigid aluminum arm plates, did not swap to new chain bar yet mounting though
- Uninstall old foundation dragger
 - Removed old foundation dragger because we had already installed a new one

1. Swap to new chain bar mounting

2/24/20 12:00 PM-4:30 PM

Authors: Curtis, Eric, Matthew


OBJECTIVES:

- 1. Respring intake
- 2. Attach new wheels
- 3. Finish attaching aluminum arm
- 4. Reinstall bottom plate

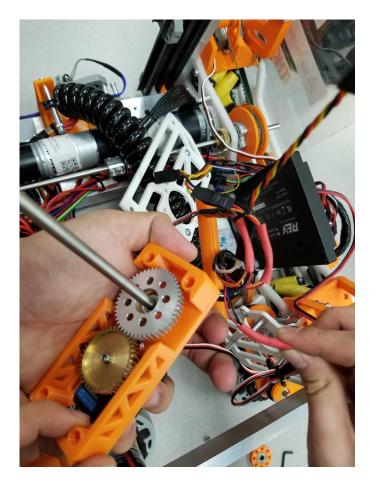
PROGRESS:

- Intake Improvement
 - Attached a stack of 2 new wheels on each side for the funnelers
 - Better contact than prototype single wheels
 - Resprung intake using springs instead of for more tension to hold it in place
- Bottom Plate
 - Re-added a stone tray on the bottom to prevent stone from jostling
- New aluminum arm
 - Concerns about the arm's fit with the assembly (if the arm was too short it would interfere with the drivetrain)
 - Was an acceptable fit, much less wasted space and more rigid arm

FUTURE PLANS:

1. Finish installing new arm assembly

2/25/20 12:00 PM-4:30 PM


Authors: Eric

OBJECTIVES:

1. Begin upgrading arm mounting

PROGRESS:

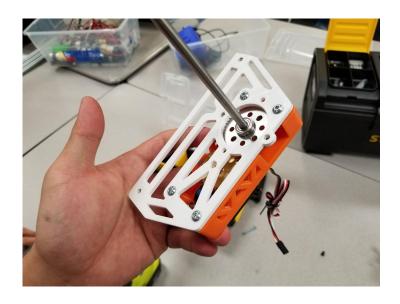
- Arm Mounts Reprinted
 - Due to the mount's damage and the incompatible design of the mounts, reprinted with new, more rigid design
 - Switch from hex axle to 6mm D-bore, still dead axle but D-bore is adjustable and more rigid
 - Axle mounting much more resilient, not just a thin plate but also walls and supports

FUTURE PLANS:

1. Actual construction of Arm

2/26/20 12:00 PM-4:30 PM

Authors: Eric


OBJECTIVES:

- 1. Further work on arm
- 2. Assemble new grabber

PROGRESS:

- Arm Construction
 - Spacer length experimented to fit all parts, however sprocket screws interfered with the arm screws
 - Tighter tolerances, ~1.5 mm gap between mounts and arms, provide more space to stone
 - Must adjust spacing with grabber installed and fit onto robot

FUTURE PLANS:

 Print custom sprockets to accommodate spacing for the base and on grabber

Authors: Andrew, Matthew

OBJECTIVES:

- 1. Finalize grabber and arm
- 2. Add "double up, one down" stringing
- 3. Fix stones getting stuck on crossbar

PROGRESS:

- Finalize grabber
 - New grabber plates printed and assembled with servo components
- Add double up one down stringing
 - Slides had issues with leaning before because one side was strung to go up, and the other down
 - Mounted parts and pulleys to string slides to go up on both slides, made extension much more even
- Fix stones getting stuck on crossbar
 - Improvised a pair of cardboard angled guides to pull the front edge of the stone under the bar to prevent the stud from catching

FUTURE PLANS:

- 1. Design and 3D print custom countersunk sprockets for grabber
- 2. Design and 3D print angled guides to push stone under crossbar

2/27/20

12:00 PM-4:30 PM

Authors: Matthew, Andrew, Eric

OBJECTIVES:

- 1. Finish attaching arm/grabber
- 2. Mount power switch
- 3. Manage Wires

PROGRESS:

- Finish attaching arm/grabber
 - Zeroed servo positions by moving servos and manually adjusting arm position
 - Tightened all the screws to finalize design
 - Fixed a broken connector for the servos
 - Re-attached servoless payload release capstone
- Mount Power Switch
 - CAD designed a 3DP power switch mount that was more secure than our duct tape
 - Attached today
- Manage Wires
 - Organized wires on the lift and arm to make sure nothing got caught/ripped

- 1. Hand robot off to programmers
- 2. Driver practice/test

VIRUS 9866 2019-20 Building Notebook

Table of Contents

Page Content

- *B1* Meeting 1: CNC router setup
- *B2* Meeting 2: Mecanum chassis repair, parts list
- *B3* Meeting 3: Prototyping chain bar + gripper, CNC wasteboard
- *B4* Meeting 4: Testing chain bar + gripper
- *B5* Meeting 5: Box tube beams, side plates, intake wheels,
- *B6* Meeting 6: Side plates, CNC upkeep, new intake hubs
- *B7* Meeting 7: Drivetrain assembly
- *B8* Meeting 8: Drivetrain assembly cont., repairing outreach robot
- *B9* Meeting 9: Drivetrain assembly cont.
- *B10* Meeting 10: Odometry pod assembly, intake + slides prototyping
- *B11* Intake prototype test results
- *B12* Meeting 11: Odometry pod assembly cont.
- *B13* Meeting 12: Installing odometry, testing slides
- *B14* Meeting 13: Delrin side plates, CNC enclosure improvement
- *B15* Meeting 14: Delrin side plates cont., 3D printing slide parts
- *B16* Meeting 15: Installing side plates, testing slides
- *B17* Meeting 16: 3D printing intake + slides parts, side plates cont.
- *B18* Meeting 17: Side plates cont., new CNC enclosure

Table of Contents

Page Content

- *B19* Meeting 18: Installing side plates cont., constructing slide rollers
- *B20* Meeting 19: Upgrading odometry + wheels, assembling intake
- *B21* Meeting 20: Assemble and test intake
- *B22* Meeting 21: Cable management, LEDs
- *B23* Meeting 22: Repairing 3D printer + intake, assembling slides
- *B24* Meeting 23: Installing slides, assembling chain bar
- *B25* Meeting 24: Assembling slides cont., testing slides
- *B26* Meeting 25: Attaching REV hubs + chain bar, cable management
- *B27* Meeting 26: Machining chain bar, assembling foundation dragger
- *B28* Meeting 27: Assembling chain bar + grabber + foundation dragger
- *B29* Meeting 28: Cable management, testing chain bar
- *B30* Meeting 29: Coiled cable, LEDs, improving chain bar
- *B31* Meeting 30: Team numbers, slide improvements, testing
- *B32* Meeting 31: Sponsor plates, testing foundation dragger
- *B33* Meeting 32: Wiring improvements, practicing
- *B34* 1st Qualifier Divider
- *B35* Qualifier 1 Reflection
- *B36* Meeting 33: Machine box tube
- *B37* Meeting 34: Finish machining, replace servos, rassemble slides

Table of Contents

Page Content

- *B38* Meeting 35: Reassembling robot, upgrading CNC
- *B39* Meeting 36: Redesign intake, machine belly pan
- *B40* Meeting 37: Machine new arm, prototype parking mechanism
- *B41* Meeting 38: Redesign crossbar mount, chain bar
- *B42* Meeting 39: New stone guides, bottom plate, capstone
- *B43* Meeting 40: Intake improvements, new team numbers Foundation stoppers
- *B45* Meeting 41: Mechanical improvements, wire management
- *B47* Qualifier 2 Reflection
- *B48* Meeting 42: Intake funnelers, new foundation dragger
- *B49* Meeting 43: Better intake funnelers, intake endstops
- *B50* Meeting 44: Crossbeam, aluminum chainbar, motor mount
- *B51* Meeting 45: Respring intake, attach funneler wheels
- *B52* Meeting 46: Upgrade arm mounting
- *B53* Meeting 47: Arm work
- *B54* Meeting 48: Finalize grabber, double stringing
- *B55* Meeting 49: Mount power switch, manage wires